Ober die Umsetzung von N-Phenyliminoketenyliden-triphenylphosphoran mit Kohlendioxid, Kohlenoxisulfid und Schwefelkohlenstoff

H.J. Bestmann und G. Schmid Institut für Organische Chemie der Universität Erlangen-Nürnberg, D-8520 Erlangen, Henkestr. 42

received in Germany: 4 April 1977; received in U.K. for publication 12 July 1977)

N-Phenyl-iminoketenyliden-triphenylphosphoran $\frac{1}{2}$ setzt sich mit Kohlendioxid zum N-Phenylmalonimido-yliden-triphenylphosphoran $\frac{1}{2}$ um (Ausb. 90%), Schmp. 117° (unter Zersetzung), dessen Struktur sich insbesondere aus dem 13 C-NMR-Spektrum ergibt, das für die C-Atome der beiden CO-Gruppen nur ein Dublett bei -170.6 ppm 2) ($J_{p_{-}C}$ =9.92 Hz) zeigt.

$$(c_{6}H_{5})_{3}\overset{\bigoplus}{P}-\overset{\bigoplus}{C}=c=n-c_{6}H_{5}+co_{2}\xrightarrow{(c_{6}H_{5})_{3}}\overset{\bigoplus}{P}\overset{\bigoplus}{C}-\overset{\bigoplus}{C}-\overset{\longleftarrow}{$$

Wir nehmen an, daß $\underline{1}$ und Kohlendioxid zunächst das Cycloadditionsprodukt $\underline{2}$ bilden, das durch elektrocyclische Ringöffnung in $\underline{3}\underline{a}$ übergeht. Nach einer Rotation um die C_{∞} - C_{β} Achse zur Konformation $\underline{3}\underline{b}$ erfolgt dann ein elektrocyclischer Ringschluß über den Stickstoff zu $\underline{4}$.

Die Wittig-Reaktion des Phosphorans $\underline{4}$ mit Aldehyden liefert die Aryliden- bzw. Alkyliden-malonimide $\underline{5}$ (R=p-N0₂-C₆H₄: Ausb. 67%; Schmp. 207°).

 $\underline{1}$ reagiert mit Kohlenoxisulfid unter Cycloaddition an der C=S-Bindung zum Ylid $\underline{6}$ (Ausb. 78%, Schmp. 149-151° unter Zersetzung). 13 C-NMR 2): δ =-173.5 ppm (d, J_{P-C} = 6,86 Hz, C=0), δ =-151.3 ppm (d, J_{P-C} = 8.21 Hz, C=N).

Aus $\underline{1}$ und Schwefelkohlenstoff erhält man analog das Ylid des bisher unbekannten 2-N-Phenyliminothietan-thions-4 $\underline{7}$: Ausb. 75%, Schmp. 157° unter Zersetzung. 13 C-NMR 2): δ =-202.6 ppm (d, J_{P-C} = 7.63 Hz, C=S), δ =-150.9 ppm (d, J_{P-C} = 9.91 Hz, C=N). Für alle neuen Verbindungen liegen richtige Elementaranalysen und weitere, der Struktur entsprechende molekülspektroskopische Daten vor.

Literatur:

- 1) Ober eine einfache Methode zur Darstellung von <u>1</u> vergl. H.J. Bestmann und G. Schmid, Angew. Chem. <u>86</u>, 274 (1974); Angew. Chem. Int. Ed. Engl. <u>13</u>,273 (1974).
- 2) Gemessen in ${\rm CDCl}_3$ mit Tetramethylsilan als innerem Standard.